HoloprojStreaming/Assets/Website~/graphAccuracy.html
2025-12-01 13:42:07 -08:00

446 lines
16 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<title>Holoprojection accuracy graphing</title>
<meta charset="utf-8" />
<meta
name="viewport"
content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0"
/>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<h2>Select a Video File</h2>
<input type="file" id="videoInput" accept="video/*" />
<canvas id="fidelityChart" width="800" height="400"></canvas>
<video
id="video"
loop
muted
crossorigin="anonymous"
playsinline
style="display: none"
>
</video>
<div id="main-scene-container"></div>
<!-- Offscreen canvases for comparison -->
<canvas id="renderedCanvas" width="256" height="256"></canvas>
<canvas id="truthCanvas" width="256" height="256"></canvas>
<script type="importmap">
{
"imports": {
"three": "https://threejs.org/build/three.module.js",
"three/addons/": "https://threejs.org/examples/jsm/"
}
}
</script>
<script type="module">
import * as THREE from "three";
import pixelmatch from "https://unpkg.com/pixelmatch?module";
let projection_vert_shader_source = await (await fetch('./projection.vert.glsl')).text();
let projection_frag_shader_source = await (await fetch('./projection.frag.glsl')).text();
let scene, camera, renderer;
let geometry;
let meshList = [];
let materialList = [];
let numCameras;
// DOM elements
const video = document.getElementById("video");
const videoInput = document.getElementById("videoInput");
// Offscreen canvases for image comparison
const renderedCanvas = document.getElementById("renderedCanvas");
const renderedContext = renderedCanvas.getContext("2d", { willReadFrequently: true });
const truthCanvas = document.getElementById("truthCanvas");
const truthContext = truthCanvas.getContext("2d", { willReadFrequently: true });
// Size constants
const width = 256;
const height = 256;
init();
function pixelArrayToUint32(imageData, canvasWidth, rowNumber) {
let buffer = imageData;
let result = 0;
for (let i = 0; i < 32; i++) {
let thisBit = (buffer[(i*4) + (rowNumber*(canvasWidth*4))] > 128) & 1;
result |= (thisBit << (31-i));
}
return result;
}
// convert unsigned integer 32 to float
function decodeUint32ToFloat(theInteger) {
const buffer = new ArrayBuffer(4);
const view = new DataView(buffer);
view.setUint32(0, theInteger); // "at address 0, write theInteger to the stack as a 32 bit integer"
// console.log(view.getFloat32(0)); // "at address 0, read the stack as a Float32"
return view.getFloat32(0);
}
function init() {
const container = document.getElementById("main-scene-container");
camera = new THREE.PerspectiveCamera(
50,
window.innerWidth / window.innerHeight,
.01,
100
);
scene = new THREE.Scene();
const video = document.getElementById("video");
const videoInput = document.getElementById("videoInput");
// Video input handler
videoInput.addEventListener("change", function () {
const file = this.files[0]; // Get the selected file
if (file) {
const videoURL = URL.createObjectURL(file); // Create blob URL
video.src = videoURL; // Set video source
video.style.display = "block"; // Show the video player
video.load(); // Load the video
video.play();
}
});
// function copyRendererToCanvas(renderer) {
// return new Promise((resolve) => {
// const gl = renderer.getContext();
// const width = 256;
// const height = 256;
// const pixels = new Uint8Array(width * height * 4);
// gl.readPixels(0, 0, width, height, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
// // Flip image vertically
// const imageData = new ImageData(width, height);
// for (let y = 0; y < height; y++) {
// const row = pixels.subarray(y * width * 4, (y + 1) * width * 4);
// imageData.data.set(row, (height - y - 1) * width * 4);
// } //vector1.angleTo vector2
// const canvas = document.createElement('canvas');
// canvas.width = width;
// canvas.height = height;
// const ctx = canvas.getContext('2d');
// ctx.putImageData(imageData, 0, 0);
// resolve(canvas);
// });
// }
const texture = new THREE.VideoTexture(video);
texture.minFilter = THREE.NearestFilter;
texture.magFilter = THREE.NearestFilter;
texture.generateMipmaps = false;
// const captureImageWidth = 256,
// captureImageHeight = 256;
// const nearClipping = 0.1,
// farClipping = 5,
// pointSize = 3,
// boxSize = 1;
// create a array of points, where every three elements corresponds to one point (x, y, z)
const vertices = new Float32Array(width * height * 3);
for (
let i = 0, j = 0, l = vertices.length;
i < l;
i += 3, j++
) {
vertices[i] = j % width; // pixels from left
vertices[i + 1] = Math.floor(j / width); // pixels from bottom (vertical zero in shader land)
vertices[i + 2] = 0;
}
geometry = new THREE.BufferGeometry();
// treat the "position" property as a vertice made from three elements
geometry.setAttribute(
"position",
new THREE.BufferAttribute(vertices, 3)
);
function buildMaterialAndMeshList(numCameras) {
// first clean out old mesh and material list
for (let i = 0; i < materialList.length; i++) {
materialList[i].dispose();
meshList[i].dispose();
scene.remove(meshList[i]);
scene.remove(materialList[i]);
}
materialList = [];
meshList = [];
// now reconstruct both lists
for (let i = 0; i < numCameras; i++) {
let material = new THREE.ShaderMaterial({
uniforms: {
map: { value: texture },
width: { value: width },
height: { value: height },
nearClipping: { value: 0.1 },
farClipping: { value: 5 },
boxSize: { value: 1 },
pointSize: { value: 3 },
cameraIndex: { value: i },
numCameras: { value: numCameras },
c2wm: { value: new THREE.Matrix4() },
prjm: { value: new THREE.Matrix4() }
},
vertexShader: projection_vert_shader_source,
fragmentShader: projection_frag_shader_source,
blending: THREE.NormalBlending,
depthTest: true,
depthWrite: true,
transparent: true,
});
let mesh = new THREE.Points(geometry, material);
// add the mesh unless this is the SOURCE OF TRUTH sensor (index==3)
if (i != 3) {
scene.add(mesh);
}
materialList[i] = material;
meshList[i] = mesh;
}
}
const arrowHelper =
scene.add( new THREE.ArrowHelper(new THREE.Vector3(1,0,0), new THREE.Vector3(0,0,0), 1, 0xff0000) );
scene.add( new THREE.ArrowHelper(new THREE.Vector3(0,1,0), new THREE.Vector3(0,0,0), 1, 0x00ff00) );
scene.add( new THREE.ArrowHelper(new THREE.Vector3(0,0,1), new THREE.Vector3(0,0,0), 1, 0x0000ff) );
// Renderer (hidden, 256x256)
renderer = new THREE.WebGLRenderer({ preserveDrawingBuffer: true });
renderer.setSize(width, height);
renderer.setPixelRatio(1);
renderer.domElement.style.display = "none";
container.appendChild(renderer.domElement);
function animate() {
if (!video.readyState) return requestAnimationFrame(animate);
let debugCanvas = document.createElement("canvas");
debugCanvas.width = 1024;
debugCanvas.height = 256;
const debugContext = debugCanvas.getContext("2d", { willReadFrequently: true });
debugContext.drawImage(texture.image, 0, 0);
let d = debugContext.getImageData(0, 0, debugCanvas.width, 1);
numCameras = decodeUint32ToFloat(pixelArrayToUint32(d.data, debugCanvas.width, 0));
if (numCameras !== materialList.length) {
console.log("got new camera count: " + numCameras);
buildMaterialAndMeshList(numCameras);
}
// Reuse vectors
const virtualForward = new THREE.Vector3();
const mainForward = new THREE.Vector3();
// Update all the properties of each camera matrix
for (let i = 0; i < numCameras; i++) {
let d = debugContext.getImageData(256 * i, 1, debugCanvas.width, 32);
const c2wm_array = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
const prjm_array = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
for (let rowNr = 0; rowNr < 16; rowNr++) {
c2wm_array[rowNr] = decodeUint32ToFloat(pixelArrayToUint32(d.data, debugCanvas.width, rowNr));
prjm_array[rowNr] = decodeUint32ToFloat(pixelArrayToUint32(d.data, debugCanvas.width, rowNr + 16));
}
materialList[i].uniforms.c2wm.value.fromArray(c2wm_array);
materialList[i].uniforms.prjm.value.fromArray(prjm_array);
if (i==3) {
camera.matrixAutoUpdate = false;
const m = new THREE.Matrix4();
m.set(...c2wm_array);
camera.matrix.copy(m.transpose());
// ✅ Decompose to update .position, .quaternion, .scale
camera.matrix.decompose(camera.position, camera.quaternion, camera.scale);
const p = new THREE.Matrix4();
p.set(...prjm_array);
camera.projectionMatrix.copy(p.transpose());
camera.updateMatrixWorld(true);
}
if (i !== 3) {
// Get main camera's current forward direction
camera.getWorldDirection(mainForward);
// Get virtual camera's forward direction
virtualForward.set(0, 0, -1);
const rotMatrix = new THREE.Matrix4().extractRotation(materialList[i].uniforms.c2wm.value);
virtualForward.applyMatrix4(rotMatrix).normalize();
// Compute angle between them
const dot = THREE.MathUtils.clamp(virtualForward.dot(mainForward), -1, 1);
const angleRadians = Math.acos(dot);
const angleDegrees = THREE.MathUtils.radToDeg(angleRadians);
// console.log(`Camera ${i}: ${angleDegrees.toFixed(2)}° difference from three.js camera`);
}
}
renderer.render(scene, camera);
// ✅ CAPTURE RENDERED FRAME
const gl = renderer.getContext();
const pixels = new Uint8Array(width * height * 4);
gl.readPixels(0, 0, width, height, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
const renderedImageData = new ImageData(width, height);
// Flip vertically
for (let y = 0; y < height; y++) {
const rowStart = y * width * 4;
const destStart = (height - y - 1) * width * 4;
for (let i = 0; i < width * 4; i++) {
renderedImageData.data[destStart + i] = pixels[rowStart + i];
}
}
renderedContext.putImageData(renderedImageData, 0, 0);
// ✅ CAPTURE TRUTH FRAME (from video, camera i=3 region)
// Assuming each camera's video region is 256px wide
truthContext.drawImage(video, 256 * 3, 256 * 2, 256, 256, 0, 0, 256, 256);
// ✅ COMPARE IMAGES
const percentSimilarity = compareImages();
let orbitAngle = Math.atan2(camera.position.x, camera.position.z);
orbitAngle = (orbitAngle + 2 * Math.PI) % (2 * Math.PI);
const orbitAngleDegrees = THREE.MathUtils.radToDeg(orbitAngle); // → 0 to 360
updateChart(orbitAngleDegrees, percentSimilarity);
requestAnimationFrame(animate);
}
// --- CHART INITIALIZATION ---
const chartCtx = document.getElementById('fidelityChart').getContext('2d');
let fidelityChart = new Chart(chartCtx, {
type: 'scatter',
data: {
datasets: [
{
label: 'Reconstruction Fidelity',
data: [],
borderColor: 'rgba(75, 192, 192, 1)',
fill: false,
tension: 0.1,
pointRadius: 1
}
]
},
options: {
animation: false,
responsive: true,
scales: {
x: {
type: 'linear',
title: {
display: true,
text: 'Orbital Angle (degrees)'
},
ticks: {
stepSize: 30, // ← You can use 3, 6, 15, 30, etc.
callback: function(value) {
return value + '°'; // e.g., "0°", "6°", "90°"
}
},
min: 0,
max: 360,
grid: {
color: function(context) {
const value = context.tick.value;
// if (value === 120 || value === 240) {
// return 'rgba(0, 0, 0, 0.5)'; // thicker lines at key angles
// }
if (value === 90 || value === 210 || value === 330) {
return 'rgba(0, 0, 0, 0.3)'; // thicker lines at key angles
}
return 'rgba(0, 0, 0, 0.1)';
}
}
},
y: {
title: {
display: true,
text: 'Similarity (%)'
},
min: 0,
max: 100
}
},
plugins: {
title: {
display: true,
text: '3D Reconstruction vs. Ground Truth'
}
}
}
});
function compareImages() {
const img1 = renderedContext.getImageData(0, 0, width, height);
const img2 = truthContext.getImageData(0, 0, width, height);
const diff = renderedContext.createImageData(width, height);
const mismatchedPixels = pixelmatch(
img1.data,
img2.data,
diff.data,
width,
height,
{ threshold: 0.1 }
);
const totalPixels = width * height;
const percentDifference = (mismatchedPixels / totalPixels) * 100;
// ✅ Log to console
// console.log(`Frame comparison: ${percentDifference.toFixed(2)}% mismatch`);
return 100 - percentDifference; // return % similarity
}
function updateChart(angleRadians, similarityPercent) {
fidelityChart.data.datasets[0].data.push({
x: angleRadians,
y: similarityPercent
});
// Optional: limit data points
if (fidelityChart.data.datasets[0].data.length > 1000) {
fidelityChart.data.datasets[0].data.shift();
}
fidelityChart.update();
}
animate();
}
</script>
</body>
</html>